
Aspire Systems 01

Are Microservices the real game changer to
product-driven businesses?

Aspire’s Custom Test
Automation Framework for a
Top Indian Online Travel Agency

ATTENTION. ALWAYS.

WHITE PAPER

Are Microservices the real game changer
to product-driven businesses?

Practice Head Author

Principal Architect
Jothi Rengarajan

VP software engineering
Aju Mathew

Aspire Systems 02

Are Microservices the real game changer to
product-driven businesses?

TABLE OF CONTENTS

1 Vision, goals and action

2 Direct and indirect benefits of microservices

3 Achieving Microservices Migration

4 Optimizing Microservices Implementation

5 Conclusion

Aspire Systems 03

Are Microservices the real game changer to
product-driven businesses?

If a product based organization has built a software and if the software is successful, they would face the
challenges of monolithic architecture and would contemplate to the migration of microservices. This paper
discusses on why microservices migration is essential for growing product based organizations and how
embracing it would prove successful.

Vision, goals and action:

Before jumping into microservices migration directly, it is important to know how the benefits of
microservices migration would map back to a product driven business vision.

The best way to achieve this is to clearly analyze the vision, map the goals for the same and analyze how
microservices fits into the same.

Following table provides a sample structure of vision, goals and action

The above action points regarding architecture can be further refined once we understand the benefits of
microservices architecture.

Vision Goals Action

Move to an architecture
that supports continuous
deployment easily

Move to an architecture
that reduces maintenance
cost significantly

Move to an architecture
that can scale
exponentially and offers
economy of scale

Be a market leader in the
space in next 4 years

Improve customer

satisfaction index by 10%

Decrease operational
cost by 30%

Grow by 25% every year

Aspire Systems 04

Are Microservices the real game changer to
product-driven businesses?

Change is inexpensive: Each microservices
deals with single responsibility and hence changes
can be easily made without affecting any other
parts of the system.

High Scalability: As each microservices is an
independent scaling unit, microservices can be
independently scaled.

Faster release time: Since any changes
is done faster, release time is also reduced
significantly.

Increased Resilience: Failure in any one of
the services does not affect the other.

Decreased Maintenance Cost:
Microservices architecture enforces stability
and hence it is very easy to maintain a properly
designed microservice almost cutting the
maintenance cost to half.

Direct and indirect benefits of microservices

Direct Benefits:

Easier Team Expansion: We all know that it is
easier to find developers and application teams to
work on new applications rather than an existing
application. With microservices, every microservice
is almost like a new application and hence it is
easier to add new teams much faster to work

Opex instead of capex: Once you have
the base, it is very easy to add more and more
microservices at scale and hence instead of looking
at the cost per application, the costing changes to
per microservice. This allows to incur on-demand
development cost with ease rather than a huge
development cost upfront.

Easier innovation and experimentation:
Since it is very easy to add as well as discard
microservices, it is possible to quickly and
cost effectively build a new feature using
microservices to test.

Competitive Edge: This is an extension of the
above point. As innovation and experimentation
is easier, it provides the product based companies
high competitive edge.

Easier Course Correction: Many applications
contain several features that are never used.
This exist in the code because of a fear that it
would break something else. With microservices,
it is very easy to continuously assess business
values and retire features which do not add
significant value. This leads to significant saving in
maintenance cost.

Indirect Benefits:

on them. Also a microservice is easy enough for
anyone to understand making it much easier to
induct teams to work on it.

Aspire Systems 05

Are Microservices the real game changer to
product-driven businesses?

Now that we have clearly established both tactical and strategical benefits of microservices,
the above table of mission, goal and action can be transformed to

Vision Goals Action

Move to microservices
architecture that
supports continuous
deployment easily

Be a market leader in the
space in next 4 years

Improve customer

satisfaction index by 10%

Move to microservices
architecture that reduces
maintenance cost
significantly

Move to microservices
architecture that can
scale exponentially and
offers economy of scale

Decrease operational
cost by 30%

Grow by 25% every year

Aspire Systems 06

Are Microservices the real game changer to
product-driven businesses?

Once a product driven organization decides that microservices is the right way forward, the next step is
to consider end to end factors in this movement. In my experience, I have noticed many software vendors
either crawl or fail because they do not account for all the important paradigms from the start.

Many think that microservices migration is only about dealing with technical changes. Though technical
alignment is very important, there are other factors that are accountable for when an product based
enterprises moves towards microservices architecture.

Achieving Microservices Migration:

Team structure Alignment

Technology Alignment

Process Alignment

Skill Alignment

Aspire Systems 07

Are Microservices the real game changer to
product-driven businesses?

According to Conway’s law, product driven
businesses that design systems “are constrained
to produce designs which are copies of the
communication structures of these products.” This
means that the structure of your software should
reflect the structure of your software development
software vendor. Teams that are aligned to the
services can be organized in such a way that
allows them to own what they’re responsible for
from end to end. Amazon calls this as “you build it,
you own it,” or “build and run” teams, responsible
for development and production throughout the
entire lifecycle for a chunk of software. The team
size for one build and run team should not be
more than 10. Since ISVs are going to end up with
multiple smaller teams at any point, they should
also build overall governance team which spans
across all the teams for providing governance
and also align individual goals of the team to an
overall goal.

While the overall agile methodology holds good
for microservices development, there are many
things that we need to bring into the process that
might not be relevant for monolithic applications.
Following points cover the most important ones

1. At the beginning of the microservices
development, atleast 3-4 sprints are
dedicated to define the software architecture,
infrastructure architecture, DevOps
architecture, standard guidelines and practices

Team structure alignment:

Process Alignment:

for the microservices. This is very important
to avoid massive reworks and failures later.
A general naming we follow for these sprints
are “Foundation sprints”.

2. Once the development has started, multiple
parallel scrum teams need to run for the
microservice that are in development
respectively. A scrum of scrums needs to
run aligning the different delivery goals of the
independent microservices to an overall goal of
the product release.

3. Testing strategy needs to be different for
microservices application. Microservices should
not rely on manual testing. Since microservices
are smaller in scope, the time required for
automation testing is generally small and simple.
Automated testing is the one that helps majorly
in the faster release to market. Microservices
without automated testing is definitely a road to
failure. The types of automated tests that each
microservice should develop are

i. Unit Tests

ii. API Tests

iii. Event driven Integration tests

iv. Saga automation tests

v. Contract tests

vi. End to end tests

Again, like any other application, these tests should
follow a pyramid with highest number of unit test
cases to lowest end-to-end tests.

Aspire Systems 08

Are Microservices the real game changer to
product-driven businesses?

Designing, delivering and operating microservices
application needs to follow different mindset as
opposed to monolithic. We will discuss the most
technical principles below:

1. API, Events, Bounded context as first
class citizen: People who are working on
monolithic application tend to jump directly
to database structures and classes when

Technology Alignment:

designing the solution. While working with
microservices, the team should first think
about APIs, events and the bounded context it
represents. Only these things matters the most
and the underlying implementation should
follow only after these details iron out.

2. Authentication and Access Control:
Authentication and access control in
microservices have different needs as opposed
to a monolithic application. As there are
several microservices that are widespread,
the best possible solution is to have a single
gateway for all the external endpoints for
the microservices. Granular access control is
enforced by an individual microservice and
an overall authentication check is enforced
at the gateway. Another authentication
need in microservices is for interservice
microservices call. In this case, either the
microservices can adopt a policy of full trust
between microservices which does not need
an authentication or adopt a policy to carry
forward the authentication for interservice
communication. These policies depend on the
nature and sensitivity of the endpoint.

3. Data Consistency: Eventual consistency
is the norm in microservices. Because of the
widespread nature of microservices, a single
business process and transactions can span
multiple microservices. There are patterns to
achieve this in microservices all relying on
eventual consistency. This is an important
shift in the mindset of the team designing
the microservices

4. A standardized DevOps process defines
all the microservices. Adherence to IaC and
pipeline as a code is crucial. IaC and Pipeline
code library needs to be available from which
each of the microservices can be chosen from.
If necessary, microservices can alter it for their
needs. This can be specifically monitored as
task during scrum planning.

5. Dependency management can be
highlighted during planning and developers
need the habit of tracking where their
microservices are used and ensure that
their versioning strategy does not affect the
dependents. It is highly recommended to use
a specialized microservice dependency tracking
system to do this.

6. Release process needs to be end to end
automated for microservice. The stages for the
release pipeline and the approval authorities
need to be set in place from the beginning.

7. Periodic audits are conducted to ensure that
microservices adhere to the right guidelines.

Aspire Systems 09

Are Microservices the real game changer to
product-driven businesses?

4. Dependency Tracking: At any point

of time, multiple teams are going to be

working on microservices. It is very important

to minimize the dependencies by design.

Though we can achieve it to a greater

degree by properly compartmentalizing

the microservices, there are going to be

dependencies between them. A product

company need to have a different mindset

and depend on proper tools to visualize, track

and validate the dependencies. Failing this

will lead to microservice dependency chaos in

a short while.

5. Infrastructure Management: Instead of

deploying and managing a single microservice,

there are numerous microservices that needs

to be provisioned and maintained. Hence

automation of the deployments and using

a single pane where DevOps can provision

and manage the infrastructure using the

best practices. Entire release needs to be

automated via DevOps. Monitoring should be

enabled to monitor all the microservices via

a single pane.

Microservices are very different in the way of
developing compared to monolithic and hence
training engineering teams should be crucial
and their thought process needs to realigned.
There is a lot to learn and unlearn for every role
in the engineering team right from the product
owners to architects, testers, developers and
operational teams.

Once the microservice migration has commenced,
it is important to track the goals and where an
ISV stands post the migration effort. If there is
significant difference between expectation vs
achievement, there are possibilities that a product
company has missed out certain important
principles. Product based businesses have to
optimize and take right corrective actions.

Skill Alignment:

Optimizing Microservices
Implementation:

6. Observability: User calls can span multiple
microservices and hence end to end tracing
should be enabled for troubleshooting. This
should be built right into the core design and
should be enforced architecturally.

Aspire Systems 10

Are Microservices the real game changer to
product-driven businesses?

Following are some of the sample observations that leads to several issues:

We have seen how a product driven businesses can achieve its goal of growth using microservices and
how to adopt the right approach for migration. Microservices enablement just does not stop with the first
step of migration. Product companies need to also measure the benefits and optimize the implementations
to eradicate the gaps.

Conclusion:

Improper infra management

Gap in skill alignment of Infra
and Devops team

Improper devops process

Scrum of Scrum team is not
setup efficiently

Gap in skill alignment of
developers

Improper testing Strategy

Improper release process

Improperdependency tracking

Insufficient Observability
across microservices

Data consistency handing is
insufficient

Improper infra management

Improper boundary of
microservices

Gap in skill alignment of Infra
and Devops team

Operational Cost

Release Time

Maintenance Cost

Scaling Issues

Aspire Systems 11

Aspire Systems is a global technology services firm serving as a trusted
technology partner for our customers. We work with some of the world’s
most innovative enterprises and independent software vendors, helping
them leverage technology and outsourcing in our specific areas of expertise.
Aspire Systems’ services include Product Engineering, Enterprise Solutions,
Independent Testing Services, Oracle Application Services, Digital Services
and IT infrastructure & Application Support Services.
we are currently over 2750+ employees and work with 200+ customers
globally. We are headquartered in Singapore and have a growing presence
in the US, UK, Middle East and Europe. For the ninth time in a row, Aspire
has been selected as one of India’s “Best Companies to Work For” by the
Great Place to Work® Institute, in partnership with The Economic Times.

For more info contact
info@aspiresys.com or visit www.aspiresys.com

SINGAPORE
+65 3163 3050

NORTH AMERICA
+1 630 368 0970

EUROPE
+44 203 170 6115

INDIA
+91 44 6740 4000

MIDDLE EAST
+971 50 658 8831

ATTENTION. ALWAYS.

